вторник, 13 ноября 2018 г.

Плазменная сфера Радуга 10 ноября 2018

Глория или ореол радуги, полная круглая радуга.
Заснята с борта самолёта в небе над Россией, 10 ноября 2018 днём.
Окна покрыты изморозью.

 

Source Плазменная сфера Радуга 10 ноября 2018 Глория Gloria Full Rainbow by Weathernature



Source Полная Радуга 10 ноября 2018 Глория gloria Full Rainbow by Weathernature



Source Gloria Full Rainbow on November 10, 2018 Полная Радуга 10.11.2018 Глория над Россией by Weathernature

Полная Радуга Гло́рия (лат. gloria — украшение; ореол) — оптическое явление в облаках. Наблюдается на облаках, расположенных прямо напротив источника света. Наблюдатель должен находиться на горе или на самолёте, а источник света (Солнце или Луна) — за его спиной. Так же можно наблюдать на видео или фотографиях снятых с дистанционно пилотируемых летательных аппаратов. Представляет собой цветные кольца света на облаке вокруг тени наблюдателя. Внутри находится голубоватое кольцо, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Угловой размер намного меньше, чем у радуги — 5…20°, в зависимости от размера капель в облаке. Глория объясняется дифракцией света, ранее уже отражённого в капельках облака так, что он возвращается от облака в том же направлении, по которому падал, то есть к наблюдателю.
 В Китае глорию называют «светом Будды» (佛光). Первые письменные свидетельства о наблюдении явления с горы Эмэйшань датируются 63 г. н. э. Цветное гало всегда окружает тень наблюдателя, что часто толковалось как степень его просветления (приближённости к Будде и другим божествам). Плазменная сфера
  Полная Радуга Гло́рия (лат. gloria — украшение; ореол) — оптическое явление в облаках. Наблюдается на облаках, расположенных прямо напротив источника света. Наблюдатель должен находиться на горе или на самолёте, а источник света (Солнце или Луна) — за его спиной. Так же можно наблюдать на видео или фотографиях снятых с дистанционно пилотируемых летательных аппаратов. Представляет собой цветные кольца света на облаке вокруг тени наблюдателя. Внутри находится голубоватое кольцо, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Угловой размер намного меньше, чем у радуги — 5…20°, в зависимости от размера капель в облаке. Глория объясняется дифракцией света, ранее уже отражённого в капельках облака так, что он возвращается от облака в том же направлении, по которому падал, то есть к наблюдателю.

Гло́рия (лат. gloria — украшение; ореол) — оптическое явление в облаках. Наблюдается на облаках, расположенных прямо напротив источника света. Наблюдатель должен находиться на горе или на самолёте, а источник света (Солнце или Луна) — за его спиной. Так же можно наблюдать на видео или фотографиях снятых с дистанционно пилотируемых летательных аппаратов.
  Full Rainbow photographer videographer Rassim on November 10, 2018 In an airplane, somewhere of Russia, Ural region. A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that compose mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes. Glories arise due to wave interference of light internally refracted within small droplets.
Представляет собой цветные кольца света на облаке вокруг тени наблюдателя. Внутри находится голубоватое кольцо, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Угловой размер намного меньше, чем у радуги — 5…20°, в зависимости от размера капель в облаке.
  Full Rainbow photographer videographer Rassim on November 10, 2018 In an airplane, somewhere of Russia, Ural region. A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that compose mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes. Glories arise due to wave interference of light internally refracted within small droplets.
Глория объясняется дифракцией света, ранее уже отражённого в капельках облака так, что он возвращается от облака в том же направлении, по которому падал, то есть к наблюдателю. Называют глорию ещё как Полная или Круглая Радуга.
  Полная Радуга Гло́рия (лат. gloria — украшение; ореол) — оптическое явление в облаках. Наблюдается на облаках, расположенных прямо напротив источника света. Наблюдатель должен находиться на горе или на самолёте, а источник света (Солнце или Луна) — за его спиной. Так же можно наблюдать на видео или фотографиях снятых с дистанционно пилотируемых летательных аппаратов. Представляет собой цветные кольца света на облаке вокруг тени наблюдателя. Внутри находится голубоватое кольцо, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Угловой размер намного меньше, чем у радуги — 5…20°, в зависимости от размера капель в облаке. Глория объясняется дифракцией света, ранее уже отражённого в капельках облака так, что он возвращается от облака в том же направлении, по которому падал, то есть к наблюдателю.Полная Радуга Гло́рия (лат. gloria — украшение; ореол) — оптическое явление в облаках. Наблюдается на облаках, расположенных прямо напротив источника света. Наблюдатель должен находиться на горе или на самолёте, а источник света (Солнце или Луна) — за его спиной. Так же можно наблюдать на видео или фотографиях снятых с дистанционно пилотируемых летательных аппаратов. Представляет собой цветные кольца света на облаке вокруг тени наблюдателя. Внутри находится голубоватое кольцо, снаружи — красноватое, далее кольца могут повторяться с меньшей интенсивностью. Угловой размер намного меньше, чем у радуги — 5…20°, в зависимости от размера капель в облаке. Глория объясняется дифракцией света, ранее уже отражённого в капельках облака так, что он возвращается от облака в том же направлении, по которому падал, то есть к наблюдателю. Full Rainbow photographer videographer Rassim on November 10, 2018 In an airplane, somewhere of Russia, Ural region. A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that compose mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes. Glories arise due to wave interference of light internally refracted within small droplets.
Full Rainbow photographer videographer Rassim on November 10, 2018 In an airplane, somewhere of Russia, Ural region. A glory is an optical phenomenon, resembling an iconic saint's halo around the shadow of the observer's head, caused by sunlight or (more rarely) moonlight interacting with the tiny water droplets that compose mist or clouds. The glory consists of one or more concentric, successively dimmer rings, each of which is red on the outside and bluish towards the centre. Due to its appearance, the phenomenon is sometimes mistaken for a circular rainbow, but the latter has a much larger diameter and is caused by different physical processes. Glories arise due to wave interference of light internally refracted within small droplets. Depending on circumstances (such as the uniformity of droplet size in the clouds), one or more of the glory's rings can be visible. The angular size of the inner and brightest ring is much smaller than that of a rainbow, about 5° to 20°, depending on the size of the droplets. In the right conditions, a glory and a rainbow can occur simultaneously. Like a rainbow, a glory is centered on the antisolar (or, in case of the Moon, antilunar) point, which coincides with the shadow of the observer's head. Since this point is by definition diametrically opposed to the Sun's (or Moon's) position in the sky, it always lies below the observer's horizon when the Sun (Moon) is up. In order to see a glory, therefore, the clouds or fog causing it must be located below the observer, in a straight line with the Sun/Moon and the observer's eye. Hence, the glory is commonly observed from a high viewpoint such as a mountain, tall building or from an aircraft. In the latter case, if the plane is flying sufficiently low for its shadow to be visible on the clouds, the glory always surrounds it. This is sometimes called The Glory of the Pilot.

HiPOD (13 November 2018): A Crater in the Aureole of Pavonis…



HiPOD (13 November 2018): A Crater in the Aureole of Pavonis Mons


   – This is an unusual crater in the Pavonis Mons aureole, possibly a glacial deposit. It appears to have secondaries or textured ejecta (sign of freshness), but is mostly infilled. It also has an unusual ringing trough or fracture. (Alt: 255 km. Black and white is less than 5 km across; enhanced color is less than 1 km.)


NASA/JPL/University of Arizona


Scientists capture the sound of sunrise on Mars

Scientists have created the soundtrack of the 5,000th Mars sunrise captured by the robotic exploration rover, Opportunity, using data sonification techniques to create a two-minute piece of music.











Scientists capture the sound of sunrise on Mars
An image of the 5,000th sunrise captured by the Mars rover, Opportunity [Credit: NASA]

Researchers created the piece of music by scanning a picture from left to right, pixel by pixel, and looking at brightness and colour information and combining them with terrain elevation. They used algorithms to assign each element a specific pitch and melody.


The quiet, slow harmonies are a consequence of the dark background and the brighter, higher pitched sounds towards the middle of the piece are created by the sonification of the bright sun disk.


Dr Domenico Vicinanza, of Anglia Ruskin University, and Dr Genevieve Williams, of the University of Exeter, will present the world premiere of the piece, entitled Mars Soundscapes in the NASA booth at the forthcoming Supercomputing SC18 Conference in Dallas (13 November).


The piece will be presented using both conventional speakers and vibrational transducers so the audience could feel the vibrations with their hands, thus enjoying a first-person experience of a sunrise on Mars.



Opportunity is a robotic rover that has been providing photographic data on Mars for NASA since 2004. Earlier this year, it ceased communications following a dust storm. Scientists hope that it may resume its function later this year.


Dr Vicinanza, Director of the Sound and Game Engineering (SAGE) research group at Anglia Ruskin, said: “We are absolutely thrilled about presenting this work about such a fascinating planet.


“Image sonification is a really flexible technique to explore science and it can be used in several domains, from studying certain characteristics of planet surfaces and atmospheres, to analysing weather changes or detecting volcanic eruptions.


“In health science, it can provide scientists with new methods to analyse the occurrence of certain shapes and colours, which is particularly useful in image diagnostics.”


Source: Anglia Ruskin University [November 09, 2018]




TANN



Archive


2018 November 13 Rotating Asteroid Bennu from OSIRIS-REx Image…


2018 November 13


Rotating Asteroid Bennu from OSIRIS-REx
Image Credit: NASA, GSFC, U. Arizona


Explanation: Could this close-by asteroid ever hit the Earth? Eventually yes – but probably not for a very long time, even though the asteroid is expected to pass inside the orbit of the Moon next century. However, to better understand the nature and orbit of all near-Earth asteroids, NASA sent the robotic Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) to investigate this one: the 500-meter across asteroid 101955 Bennu. Launched in 2016, OSIRIS-REx is now approaching Bennu, and is first scheduled to map the minor planet’s rough surface. The featured time-lapse video taken earlier this month compacts Bennu’s 4.25-hour rotation period into about 7 seconds. Bennu’s diamond-like appearance is similar to asteroid Ryugu currently being visited by the Japanese spacecraft Hayabusa2. The exact future orbit of Bennu is a bit uncertain due to close passes near the Earth and the Yarkovsky effect: a slight force created by an object’s rotationally-induced, asymmetric infrared glow. If all goes according to plan, ORISIS-Rx will actually touch the asteroid in 2020, collect soil samples, and return them to Earth in 2023 for detailed analyses.


∞ Source: apod.nasa.gov/apod/ap181113.html


Tourmaline | #Geology #GeologyPage #Mineral Locality: Pyingyi…


Tourmaline | #Geology #GeologyPage #Mineral


Locality: Pyingyi Taung, Male, Singu Township, Pyin-Oo-Lwin District, Mandalay Division, Burma (Myanmar)


Size: 4.8 x 3.9 x 2


Photo Copyright © Saphira Minerals


Geology Page

www.geologypage.com

https://www.instagram.com/p/BqHVjxPFCfa/?utm_source=ig_tumblr_share&igshid=rsx5bok5a26s


Prase | #Geology #GeologyPage #Mineral Locality: Serifos…


Prase | #Geology #GeologyPage #Mineral


Locality: Serifos Island, Greece

Size: 6.3 x 3.1 x 2.1


Photo Copyright © Saphira Minerals


Geology Page

www.geologypage.com

https://www.instagram.com/p/BqHWUeSlTYz/?utm_source=ig_tumblr_share&igshid=1j3szrm8m2gdt


Fly Geyser, Nevada, USA | #Geology #GeologyPage #FlyGeyser…


Fly Geyser, Nevada, USA | #Geology #GeologyPage #FlyGeyser #USA


Fly Geyser, also known as Fly Ranch Geyser is a man-made small geothermal geyser located in Washoe County, Nevada approximately 20 miles (32 km) north of Gerlach. Fly Geyser is located near the edge of Fly Reservoir in the Hualapai Geothermal Flats and is only about 5 feet (1.5 m) high, by 12 feet (3.7 m) wide, counting the mound on which it sits.


Geology Page

www.geologypage.com

https://www.instagram.com/p/BqHXta1l4HJ/?utm_source=ig_tumblr_share&igshid=n40i08i7ecxd


Fairy Chimneys, Turkey | #Geology #GeologyPage #Turkey These…


Fairy Chimneys, Turkey | #Geology #GeologyPage #Turkey


These strange conical spires are found in the Cappadocia region of Turkey.


Several million years ago, active volcanoes spewed volcanic ash that covered the ground. Rainwater and wind eroded the soft compressed volcanic ash, leaving behind the harder overlying basalts, forming the fairy chimneys.


Geology Page

www.geologypage.com

https://www.instagram.com/p/BqF41VIlN0I/?utm_source=ig_tumblr_share&igshid=rn5nxf9drhbd


Time for lead collisions in the LHC


CERN – European Organization for Nuclear Research logo.


Nov. 12, 2018


The first collisions of lead nuclei mark the start of the latest LHC heavy-ion run



Image above: The first lead-lead collisions of 2018 send showers of particles through the ALICE detector (Image: ALICE/CERN).


The lead ion run is under way. On 8 November at 21:19, the four experiments at the Large Hadron Collider – ALICE, ATLAS, CMS and LHCb – recorded their first collisions of lead nuclei since 2015. For three weeks and a half, the world’s biggest accelerator will collide these nuclei, comprising 208 protons and neutrons, at an energy of 5.02 teraelectronvolts (TeV) for each colliding pair of nucleons (protons and neutrons). This will be the fourth run of this kind since the collider began operation. In 2013 and 2016, lead ions were collided with protons in the LHC.


Collisions of lead nuclei will allow physicists to study specific phenomena such as quark-gluon plasma, a state of matter that is thought to have existed during the very first moments of the Universe, when the temperature was so high that quarks and gluons were not confined by the strong force into protons and neutrons. The previous runs with lead nuclei have already produced a vast amount of data about the properties of quark-gluon plasma. Evidence of many other phenomena, including light-by-light scattering, has also been found in heavy ion collisions.


Among the four LHC experiments, the ALICE experiment specialises in studies of the strong interaction and the quark-gluon plasma. The experiment aims to perform more precise measurements of various phenomena, such as the melting and regeneration of quarkonia – particles consisting of a heavy quark and anti-quark pair. A Facebook live event will take place on Tuesday 13 November at 4pm (CET) on CERN Facebook page.



Image above: Event display from the first lead-lead LHC collisions in 2018, recorded by the LHCb detector. (Image: LHCb/CERN).


The accelerator teams intend to rise to various challenges for the 2018 run.  “We want to maximise the luminosity in order to generate as much data as possible and prepare for future runs, especially at the High-Luminosity LHC”, says John Jowett, the physicist in charge of the LHC heavy ion runs. Luminosity is a key parameter of a collider that indicates the number of collisions that can be produced in a given period of time. During the last heavy ion run in 2015, the luminosity achieved was over three and a half times higher than the LHC’s design luminosity. This time the LHC team is aiming even higher.


A new configuration of the accelerator optics has been implemented to increase the squeezing of the beams at the collision points. The next step will be to reduce the spacing between the bunches of nuclei that make up each beam, thereby increasing the number of bunches.


The experts have been getting ready for the run for several months, carrying out extensive analyses and measurements to increase the performance of the injectors as the lead nuclei are actually prepared by a chain of four accelerators before being sent to the LHC.



Image above: One of the first lead-ion collisions in 2018 recorded by the CMS detector. (Image: CMS/CERN).


These heavy-ion collisions will last three and a half weeks, with the last beams scheduled for the morning of 3 December.



Image above: Event display of one of the first lead-lead collision recorded by the ATLAS detector in 2018. (Image: ATLAS/CERN).


The accelerators will then be shut down for a two-year technical shutdown that will allow major upgrades to be made to accelerators and detectors.


These heavy-ion collisions will last three and a half weeks, with the last beams scheduled for the morning of 3 December.


Watch the Facebook Live on Tuesday 13 November at 4pm (CET) on CERN Facebook page: https://www.facebook.com/cern/


Note:


CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.


The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.


Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.


Related links:


Large Hadron Collider (LHC): https://home.cern/science/accelerators/large-hadron-collider


ALICE: https://home.cern/science/experiments/alice


ATLAS: https://home.cern/science/experiments/atlas


CMS: https://home.cern/science/experiments/cms


LHCb: https://home.cern/science/experiments/lhcb


Quark-gluon plasma: https://home.cern/science/physics/heavy-ions-and-quark-gluon-plasma


For more information about European Organization for Nuclear Research (CERN), Visit: https://home.cern/


Images (mentioned), Text, Credits: CERN/Corinne Pralavorio.


Greetings, Orbiter.chArchive link


Cumbrian Neolithic and Bronze Age Exceptions, Tullie House Museum and Gallery, Cumbria,...




Cumbrian Neolithic and Bronze Age Exceptions, Tullie House Museum and Gallery, Cumbria, 4.11.18.


The carved stone ball, gold neck ring and gold neck ornament were all found in Cumbria but their design origins lie in Scotland, Ireland or Cornwall. They potentially highlight the level of trade or the scope of the prehistoric artistic community.


Source link


Roman Wrist Purse, Tullie House Museum and Gallery, Carlisle, Cumbria, 4.11.18.



Roman Wrist Purse, Tullie House Museum and Gallery, Carlisle, Cumbria, 4.11.18.


Source link


HiPOD (12 November 2018): A Certain Calm   – Imagine listening…


HiPOD (12 November 2018): A Certain Calm


   – Imagine listening to the Martian wind gently sculpting these dunes. Perhaps you can hear the sound of moving sand. (Alt: 301 km, less than 1 km across.)


NASA/JPL/University of Arizona


The Bewcastle Cauldron, Tullie House Museum and Gallery, Carlisle, Cumbria, 4.11.18.A...






The Bewcastle Cauldron, Tullie House Museum and Gallery, Carlisle, Cumbria, 4.11.18.


A bronze cauldron found in 1907. Made from 1mm sheet bronze, this cauldron has been repaired five times and is missing a pair of handles. It dates originally from the 1st century CE.


Source link


Featured

Полет на параплане с обрыва на мысу Куяльницкого лимана, соленого озера. Экстремальный развлекательный полет проводится для любителей. ...

Popular