воскресенье, 19 августа 2018 г.

5 Reasons our Space Launch System is the Backbone for Deep Space Exploration

Our Space Launch

System
(SLS) will be the world’s most powerful rocket, engineered to carry

astronauts and cargo farther and faster than any rocket ever built. Here are

five reasons it is the backbone of bold, deep space exploration missions.


image

5. We’re Building This Rocket to Take Humans to the Moon and Beyond


The SLS rocket is a national asset for leading new missions to deep

space. More than 1,000 large and small

companies in 44 states
are building the rocket that will take humans to

the Moon.
Work on SLS has an economic impact of $5.7 billion and

generates 32,000 jobs. Small businesses across the U.S. supply 40 percent of

the raw materials for the rocket. An investment in SLS is an investment in

human spaceflight and in American industry and will lead to applications beyond

NASA.


image

4. This Rocket is Built for Humans


Modern deep space systems are designed and built to keep humans safe

from launch to landing.  SLS provides the

power to safely send the Orion

spacecraft
and astronauts to the Moon. Orion, powered by the European

Service Module
, keeps the crew safe during the mission. Exploration

Ground Systems
at NASA’s Kennedy Space Center in Florida, safely

launches the SLS with Orion on top and recovers the astronauts and Orion after splashdown.


image

3. This Rocket is Engineered for a Variety of Exploration Missions


SLS is engineered for decades of human space exploration to come. SLS is

not just one rocket but a transportation

system
that evolves to meet the needs of a variety of missions. The

rocket can send more than 26 metric tons (57,000 pounds) to the Moon and can

evolve to send up to 45 metric tons (99,000 pounds) to the Moon. NASA has the

expertise to meet the challenges of designing and building a new, complex

rocket that evolves over time while developing our nation’s capability to

extend human existence into deep space.


image

2. This Rocket can Carry Crews and Cargos Farther, Faster


SLS’s versatile

design
enables it to carry astronauts their supplies as well as cargo

for resupply and send science missions far in the solar system. With its power

and unprecedented ability to transport heavy and large volume science payloads in

a single mission, SLS can send cargos to Mars or probes even farther out in the

solar system, such as to Jupiter’s moon Europa, faster than any other rocket

flying today. The rocket’s large cargo volume makes it possible to design

planetary probes, telescopes and other scientific instruments with fewer complex

mechanical parts.


image

1. This Rocket Complements International and Commercial Partners


The Space Launch System is the right rocket to enable

exploration on and around the Moon and even longer missions
away

from home. SLS makes it possible for astronauts to bring along supplies and

equipment needed to explore, such as pieces of the Gateway,

which will be the cornerstone of sustainable lunar exploration. SLS’s ability

to launch both people and payloads to deep space in a single mission makes

space travel safer and more efficient. With no buildings, hardware or grocery

stores on the Moon or Mars, there are plenty of opportunities for support by

other rockets. SLS and contributions by international and commercial partners

will make it possible to return to the Moon and create a springboard for exploration

of other areas in the solar system where we can discover and expand knowledge

for the benefit of humanity.


image

Learn more about the Space Launch System.


Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Подводный сад Немо Sergio Gemberini

Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство.  
Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство.
  
Сад Немо подводные культивации для увеличения производства продуктов питания
Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство. Сад Немо подводные культивации для увеличения производства продуктов питания Sergio Gemberini, генеральный директор итальянской компании Ocean Reef, создал Nemo Garden. Владелец двух компаний, занимающийся подводным плаванием в Италии и Калифорнии, во время отпуска в Ноли, придумал интересную идею выращивания растений в море. У Серхио Гамберини возникла идея сада под водой, он мечтал превратить подводное плавание в более интерактивную деятельность. Его первоначальный план состоял в том, чтобы закрепить шар гибкого материала, содержащий вазу с заводом до морского дна. К его удивлению, завод не умер и вырос. Следующим шагом было применить тот же метод, используя семена, которые прорастали в течение 36 часов. На участке площадью 15 м2 в настоящее время имеется семь биосфер, каждая из которых имеет размер комнаты. В каждой сфере насчитывается около 60 растений, питаемых гидропонными инструментами и орошаемых гравитационными системами. Это базилик, чеснок, редис, капуста и клубника, просто чтобы привести некоторые примеры. Специалисты по дайвингу склонны утверждать, что эти растения не будут иметь тех же характеристик, что и на земле. Sergio Gemberini утверждает, что «море самодостаточное, свободный инкубатор». В заливе Ноли Noli температура воды довольно стабильна и, следовательно, предлагает растениям постоянный тепловое питание. Со своей стороны, вода моря действует как фильтр, увлажняя растительный покров. В результате растения, выращиваемые под водой, являются более здоровыми и более качественными. Аромат и вкус  более интенсивны, чем у растений, выращенных на Земле. Биосферы - идеальные теплицы, так как никакие паразиты не могут их достичь. Поэтому отпадает необходимость в пестицидах или других химических веществах. Естественное испарение обеспечивает испарение пресной воды внутри сфер, позволяет систематически орошать растения. Кроме того, эксперименты показали, что эти растения растут быстрее, чем их терригенные коллеги. Серхио Гамберини работает с экспертами в области сельского хозяйства, чтобы улучшить структуру и долговечность построенных сфер. Его компания имеет разрешение на работу пять месяцев в году с мая по сентябрь. Sergio Gemberini  готов организовать  крупномасштабное производство.  

Meteor Activity Outlook for July 21-27, 2018

Jeff Sullivan captured this short fireball while photographing the Milky Way on July 7 at 23:06 PDT from Bodie, CA USA. For more of Jeff’s excellent work visit: www.JeffSullivanPhotography.com

During this period the moon will reach it’s full phase on Friday July 27th. At that time the moon will be located opposite the sun and will lie above the horizon most of the night. This weekend the waxing gibbous moon will set during the early morning hours allowing a few hours of dark skies in which to watch meteor activity under good conditions. The estimated total hourly meteor rates for evening observers this week is near 3 as seen from mid-northern latitudes and also 3 for those viewing from subtropical southern latitudes (25S). For morning observers the estimated total hourly rates should be near 17 for those viewing from mid-northern latitudes and also 17 for those viewing from subtropical southern latitudes (25S). The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Evening rates are reduced during this period due to moonlight. Note that the hourly rates listed below are estimates as viewed from dark sky sites away from urban light sources. Observers viewing from urban areas will see less activity as only the brighter meteors will be visible from such locations.


The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning July 21/22. These positions do not change greatly day to day so the listed coordinates may be used during this entire period. Most star atlases (available at science stores and planetariums) will provide maps with grid lines of the celestial coordinates so that you may find out exactly where these positions are located in the sky. A planisphere or computer planetarium program is also useful in showing the sky at any time of night on any date of the year. Activity from each radiant is best seen when it is positioned highest in the sky, either due north or south along the meridian, depending on your latitude. It must be remembered that meteor activity is rarely seen at the radiant position. Rather they shoot outwards from the radiant so it is best to center your field of view so that the radiant lies near the edge and not the center. Viewing there will allow you to easily trace the path of each meteor back to the radiant (if it is a shower member) or in another direction if it is a sporadic. Meteor activity is not seen from radiants that are located far below the horizon. The positions below are listed in a west to east manner in order of right ascension (celestial longitude). The positions listed first are located further west therefore are accessible earlier in the night while those listed further down the list rise later in the night.





Radiant Positions at 22:00 LDT


Radiant Positions at 22:00

Local Daylight Saving Time






Radiant Positions at 01:00 LDT


Radiant Positions at 0100

Local Daylight Saving Time






Radiant Positions at 4:00 LDT


Radiant Positions at 04:00

Local Daylight Saving Time





These sources of meteoric activity are expected to be active this week.


The July gamma Draconids (GDR) were first noticed by Japanese observers using SonotoCo and the IMO’s network team of Sirko Molau and Juergen Rendtel in 2009. This stream is active from July 22-30 with maximum activity occurring on July 28. The radiant is currently located at 18:28 (277) +50, which places it in southeastern Draco, 4 degrees southeast of the 2nd magnitude star known as Eltanin (gamma Draconis). The radiant also lies 12 degrees due north of the brilliant zero magnitude star Vega (alpha Lyrae). This radiant is best placed near midnight local daylight saving time (LDT), when it lies on the meridian and is located highest in the sky. With an entry velocity of 28 km/sec., the average gamma Draconid meteor would be of slow velocity. In 2016, this stream produced an strong outburst that lasted approximately 1 hour. If a repeat performance occurs this year it will most likely occur near 12:00 Universal Time on July 28, which is equivalent to 5:00am PDT. This timing favors the west coast of North America and the Pacific area. Nothing unusual occurred in 2017. Some researchers feel these meteors are related to the kappa Cygnids, which are active next month.


The alpha Capricornids (CAP) are active from July 3 through August 11 with maximum activity occurring during the last week of July. The broad maximum occurs anywhere from July 25 to the 30th with visual rates usually around 3 per hour. The radiant is currently located at 19:52 (298) -11, which places it in southern Aquila, 5 degrees northwest of the 4th magnitude star known as alpha 2 Capricornii. This radiant is best placed near 0100 LDT, when it lies on the meridian and is located highest in the sky. Hourly rates at this time should be near 2 no matter your location. With an entry velocity of 22 km/sec., the average alpha Cap meteor would be of slow velocity.


The center of the large Anthelion (ANT) radiant is currently located at 20:48 (312) -18. This position lies in central Capricornus, 3 degrees west of the 4th magnitude Dorsum (theta Capricornii). This radiant is best placed near 0200 LDT, when it lies on the meridian and is located highest in the sky. Hourly rates at this time should be near 1 as seen from mid-northern latitudes and 2 as seen from tropical southern latitudes. With an entry velocity of 30 km/sec., the average Anthelion meteor would be of slow velocity.


The Northern delta Aquariids (NDA) are active from July 23 through August 27. The radiant is currently located at 21:44 (326) -07. This position is located in western Aquarius, 3 degrees east of the 3rd magnitude star known as Sadalsuud (beta Aquarii). Maximum activity is not expected until August 14, so hourly rates will low at this time. The radiant is best placed near 0300 LDT, when it lies highest in the sky. With an entry velocity of 38 km/sec., these meteors would be of medium velocities. This shower seems to be a continuation of the Northern June Aquilids, which has been active since early June.


The Southern Delta Aquariids (SDA) are now active from a radiant located at 22:12 (333) -19. This position is located in southwestern Aquarius, 10 degrees southwest of the 3rd magnitude star known as Skat (delta Aquarii). Maximum activity is expected on July 30th. Hourly rates will depend on your latitude. Those viewing from the southern tropics will see the best rates of near 2-3 per hour. Rates seen from mid-northern latitudes will range from 1-2 per hour, depending on the haziness of your skies. The radiant rises near 2200 (10pm) LDT for observers located in the mid northern latitudes, but is best placed near 0300 LDT, when it lies highest in the sky. With an entry velocity of 41 km/sec., most activity from this radiant would be of average velocities.


The last of the epsilon Pegasids (EPG) are expected this weekend. These meteors are active from July 03-23 with maximum activity occurring on July 11th. The radiant position currently lies at 22:40 (340) +17. This area of the sky lies in western Pegasus, 4 degrees northwest of the 2nd magnitude star known as Markab (alpha Pegasi). These meteors are best seen near 0400 LDT when the radiant lies highest in the sky. Hourly rates are expected to be less than 1 no matter your location. With an entry velocity of 28 kilometers per second, a majority of these meteors will appear to move slowly.


The July Pegasids (JPE) have been noticed for some time now but have had a checkered history. It has been added, dropped, and then re-added to several radiant lists. Video studies within the past 10 years has positively identified this source as an active radiant during the entire month of July. Maximum activity occurred on July 10th. The radiant is currently located at 23:51 (358) +14. This area of the sky is located in southern Pegasus, 4 degrees west of the 3rd magnitude star known as Algenib (gamma Pegasi). This area of the sky is best seen during the last dark hour before dawn when the radiant lies highest in a dark sky. Rates are expected to be less than 1 per hour this week no matter your location. With an entry velocity of 68 km/sec., the average meteor from this source would be of swift velocity.


The Perseids (PER) are active from a radiant located at 01:06 (016) +52. This position is not is Perseus, rather it lies in southern Cassiopeia, 6 degrees southeast of the 2nd magnitude star known as Schedar (alpha Cassiopeiae). This area of the sky is best placed for viewing during the last dark hour before dawn when it lies highest in the sky. Maximum is not until August 13 so current rates are expected to be near 2 per hour as seen from the northern hemisphere and 1 as seen from south of the equator. Unfortunately these meteors are not well seen from the southern hemisphere. With an entry velocity of 59 km/sec., the average meteor from this source would be of swift velocity.


The 49 Andromedids (FAN) were discovered by Željko Andreić and the Croatian Meteor Network team based on studying SonotaCo and CMN observations (SonotaCo 2007-2011, CMN 2007-2010). These meteors are active from July 6 through August 14 with maximum activity occurring on July 21. The current position of the radiant is 01:44 (026) +49. This position lies in extreme northeastern Andromeda, very close to the 4th magnitude star known as Nembus (51 Andromedae). Rates are currently expected to be less than 1 per hour no matter your location. With an entry velocity of 60 km/sec., the average meteor from this source would be of swift speed.


The eta Eridanids (ERI) were discovered by Japanese observers back in 2001. Activity from this stream is seen from July 23 though September 17 with maximum activity occurring on August 11. The radiant currently lies at 01:48 (027) -18, which places it in southern Cetus, 2 degrees southeast of the 4th magnitude star known as tau Ceti. This area of the sky is best seen during the last dark hour before dawn when the radiant lies highest in a dark sky. Current rates are expected to be less than 1 per hour during this period no matter your location. With an entry velocity of 65 km/sec., the average meteor from this source would be of swift velocity.


The psi Cassiopeiids (PCA) were discovered by Zdenek Sekanina in his study study of radio streams. These meteors are active from July 5 through August 7 with maximum activity occurring on July 22. The current position of the radiant is 02:20 (035) +73. This position lies in northeastern Cassiopeia, 2 degrees northeast of the 4th magnitude star known as 50 Cassiopeiae. Rates are  expected to be near 1 per hour as seen from the northern hemisphere and less than 1 as seen from south of the equator. With an entry velocity of 60 km/sec., the average psi Cassiopeiid meteor would be of swift speed.


The phi Piscids (PPS) are another discovery by Dr. Peter Brown and associates using data from the Canadian Meteor Orbit Radar (CMOR) installation. These meteors are active from June 8-August 02 with maximum activity occurring on July 5th. The radiant position currently lies at 02:16 (034) +32. This area of the sky lies in the small constellation of Triangulum, 2 degrees southwest of the 4th magnitude star known as gamma Trianguli. These meteors are best seen near during the last dark hour of the night when the radiant lies highest in a dark sky. Hourly rates are expected to be less than 1 no matter your location. With an entry velocity of 67 kilometers per second, a majority of these meteors will appear to move with swift velocities.


The last of the c-Andromedids (CAN) should be seen this week. Activity from this source is seen from June 26 though July 27 with maximum activity occurring on July 9. The radiant currently lies at 02:52 (043) +52, which places it in northwestern Perseus, just south of the 4th magnitude star known as tau Persei. This area of the sky is best seen during the last dark hour before dawn when the radiant lies highest in a dark sky. Observers in the northern hemisphere are better situated to view this activity as the radiant rises much higher in the sky before dawn compared to southern latitudes. Current rates less than 1 no matter your location. With an entry velocity of 58 km/sec., the average meteor from this source would be of swift velocity.


The July chi Arietids (JXA) were discovered by two investigating teams in Europe using video data from European video Meteor Network Database (EDMOND), SonotaCo, 2013; and CMN, 2013. Activity from this stream is seen from July 2 though August 1 with maximum activity occurring on July 13. The radiant currently lies at 02:56 (044) +12, which places it in southern Aries, 3 degrees northeast of the 4th magnitude star known as mu Ceti. This area of the sky is best seen during the last dark hour before dawn when the radiant lies highest in a dark sky. Current rates are expected to be less than 1 per hour no matter your location. With an entry velocity of 69 km/sec., the average meteor from this source would be of swift velocity.


As seen from the mid-northern hemisphere (45N) one would expect to see approximately 10 sporadic meteors per hour during the last hour before dawn as seen from rural observing sites. Evening rates would be near 2 per hour. As seen from the tropical southern latitudes (25S), morning rates would also be near 9 per hour as seen from rural observing sites and 2 per hour during the evening hours. Locations between these two extremes would see activity between the listed figures.





















































































































































SHOWER DATE OF MAXIMUM ACTIVITY CELESTIAL POSITION ENTRY VELOCITY CULMINATION HOURLY RATE CLASS
RA (RA in Deg.) DEC Km/Sec Local Daylight Saving Time North-South
July gamma Draconids (GDR) Jul 28 18:28 (277) +50 28 00:00 <1 – <1 IV
alpha Capricornids (CAP) Jul 27 19:52 (298) -11 22 01:00 2 – 2 II
Anthelions (ANT) 20:48 (312) -18 30 02:00 1 – 2 III
Northern delta Aquariids (NDA) Aug 14 21:44 (326) -07 38 03:00 <1 – <1 IV
Southern Delta Aquariids (SDA) Jul 30 22:12 (333) -19 41 04:00 2 – 3 I
epsilon Pegasids (EPG) Jul 11 22:40 (340) +17 28 05:00 <1 – <1 IV
July Pegasids (JPE) Jul 10 23:51 (358) +14 68 06:00 <1 – <1 IV
Perseids (PER) Aug 13 01:06 (016) +52 59 06:00 2 – 1 I
49 Andromedids (FAN) Jul 21 01:44 (026) +49 60 07:00 <1 – <1 IV
eta Eridanids (ERI) Aug 11 01:48 (027) -18 65 07:00 <1 – <1 IV
phi Piscids (PPS) Jul 05 02:16 (034) +32 66 08:00 <1 – <1 IV
psi Cassiopeiids (PCA) Jul 22 02:20 (035) +73 42 08:00 <1 – <1 IV
c-Andromedids (CAN) Jul 09 02:52 (043) +52 58 08:00 <1 – <1 IV
July chi Arietids (JXA) Jul 13 02:56 (044) +12 69 08:00 <1 – <1 IV

2018 August 19 Asperitas Clouds Over New Zealand Image Credit…


2018 August 19


Asperitas Clouds Over New Zealand
Image Credit & Copyright: Witta Priester


Explanation: What kind of clouds are these? Although their cause is presently unknown, such unusual atmospheric structures, as menacing as they might seem, do not appear to be harbingers of meteorological doom. Formally recognized as a distinct cloud type only last year, Asperitas clouds can be stunning in appearance, unusual in occurrence, and are relatively unstudied. Whereas most low cloud decks are flat bottomed, asperitas clouds appear to have significant vertical structure underneath. Speculation therefore holds that asperitas clouds might be related to lenticular clouds that form near mountains, or mammatus clouds associated with thunderstorms, or perhaps a foehn wind – a type of dry downward wind that flows off mountains. Such a wind called the Canterbury arch streams toward the east coast of New Zealand’s South Island. The featured image, taken above Hanmer Springs in Canterbury, New Zealand, in 2005, shows great detail partly because sunlight illuminates the undulating clouds from the side.


∞ Source: apod.nasa.gov/apod/ap180819.html


Meteor Activity Outlook for July 28-August 3, 2018

Fireball, Moon and Venus over Heidelberg, Germany – June 16th, 2018 © Uwe Reichert
Canon Canon EOS 6D – f10, 1.6s, 180.0 mm, ISO 4000

During this period the moon will wane from it’s nearly full phase down to almost half-illuminated. This weekend the moon will rise shortly after dusk and will rise approximately 45 minutes later each night. Although meteor activity is strong this time of year the bright moon will obscure all but the brighter meteors. The estimated total hourly meteor rates for evening observers this week is near 3 as seen from mid-northern latitudes and also 3 for those viewing from subtropical southern latitudes (25S). For morning observers the estimated total hourly rates should be near 14 for those viewing from mid-northern latitudes and also 14 for those viewing from subtropical southern latitudes (25S). The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Rates are reduced during this period due to moonlight. Note that the hourly rates listed below are estimates as viewed from dark sky sites away from urban light sources. Observers viewing from urban areas will see less activity as only the brighter meteors will be visible from such locations.


The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning July 28/29. These positions do not change greatly day to day so the listed coordinates may be used during this entire period. Most star atlases (available at science stores and planetariums) will provide maps with grid lines of the celestial coordinates so that you may find out exactly where these positions are located in the sky. A planisphere or computer planetarium program is also useful in showing the sky at any time of night on any date of the year. Activity from each radiant is best seen when it is positioned highest in the sky, either due north or south along the meridian, depending on your latitude. It must be remembered that meteor activity is rarely seen at the radiant position. Rather they shoot outwards from the radiant so it is best to center your field of view so that the radiant lies near the edge and not the center. Viewing there will allow you to easily trace the path of each meteor back to the radiant (if it is a shower member) or in another direction if it is a sporadic. Meteor activity is not seen from radiants that are located far below the horizon. The positions below are listed in a west to east manner in order of right ascension (celestial longitude). The positions listed first are located further west therefore are accessible earlier in the night while those listed further down the list rise later in the night.





Radiant Positions at 22:00 LDT


Radiant Positions at 22:00

Local Daylight Saving Time






Radiant Positions at 01:00 LDT


Radiant Positions at 0100

Local Daylight Saving Time






Radiant Positions at 4:00 LDT


Radiant Positions at 04:00

Local Daylight Saving Time





These sources of meteoric activity are expected to be active this week.


Details of each stream will continue next week when the moon will not be such a factor.



































































































































SHOWER DATE OF MAXIMUM ACTIVITY CELESTIAL POSITION ENTRY VELOCITY CULMINATION HOURLY RATE CLASS
RA (RA in Deg.) DEC Km/Sec Local Daylight Saving Time North-South
alpha Capricornids (CAP) Jul 27 20:20 (305) -10 22 01:00 1 – 1 II
Anthelions (ANT) 21:12 (318) -16 30 02:00 1 – 2 III
Northern delta Aquariids (NDA) Aug 14 21:44 (333) -04 38 03:00 <1 – <1 IV
Southern Delta Aquariids (SDA) Jul 30 22:40 (340) -17 41 04:00 3 – 4 I
Piscis Austrinids (PAU) Aug 08 22:52 (343) -24 44 04:00 <1 – <1 II
July Pegasids (JPE) Jul 10 00:16 (004) +15 68 06:00 <1 – <1 IV
Perseids (PER) Aug 13 01:48 (027) +54 59 06:00 3 – 2 I
49 Andromedids (FAN) Jul 21 02:16 (034) +51 60 07:00 <1 – <1 IV
eta Eridanids (ERI) Aug 11 02:12 (033) -16 65 07:00 <1 – <1 IV
phi Piscids (PPS) Jul 05 02:40 (040) +34 66 08:00 <1 – <1 IV
psi Cassiopeiids (PCA) Jul 22 03:08 (047) +76 42 08:00 <1 – <1 IV
July chi Arietids (JXA) Jul 13 03:24 (051) +14 69 08:00 <1 – <1 IV

Ancient changes along the Hudson offer glimpse into how ice sheets grew

In a kind of geological mystery, scientists have known for decades that a massive ice sheet stretched to cover most of Canada and much of the northeastern U.S. 25,000 years ago. What’s been trickier to pin down is how—and especially how quickly—it reached its ultimate size. One clue to answering that, Tamara Pico said, may involve changes to the Hudson River.











Ancient changes along the Hudson offer glimpse into how ice sheets grew
Credit: T. Pico et al. Geology 2018]

A graduate student working in the group led by Jerry Mitrovica, the Frank B. Baird Jr. Professor of Science, Pico is the lead author of a study that estimates how glaciers moved by examining how the weight of the ice sheet altered topography and led to changes in the river’s course. The study is described in a July paper published in Geology.


“The Hudson River has changed course multiple times over the last million years,” Pico said. “The last time was about 30,000 years ago, just before the last glacial maximum, when it moved to the east.


“That ancestral channel has been dated and mapped … and the way the ice sheet connects to this is: As it is growing, it’s loading the crust it’s sitting on. The Earth is like bread dough on these time scales, so as it gets depressed under the ice sheet, the region around it bulges upward. In fact, we call it the peripheral bulge. The Hudson is sitting on this bulge, and as it’s lifted up and tilted, the river can be forced to change directions.”


To develop a system that could connect the growth of the ice sheet with changes in the Hudson’s direction, Pico began with a model for how the Earth deforms in response to various loads.


“So we can say, if there’s an ice sheet over Canada, I can predict the land in New York City to be uplifted by X many meters,” she said. “What we did was create a number of different ice histories that show how the ice sheet might have grown, each of which predicts a certain pattern of uplift, and then we can model how the river might have evolved in response to that upwelling.”


The result, Pico said, is a model that may for the first time be able to use the changes in natural features in the landscape to measure the growth of ice sheets.


“This is the first time a study has used the change in a river’s direction to understand which ice history is most likely,” she said. “There’s very little data about how the ice sheet grew because as it grows it acts like a bulldozer and scrapes everything away to the edges. We have plenty of information about how the ice retreats, because it deposits debris as it melts back, but we don’t get that type of record as the ice is advancing.”


What little data scientists do have about how the ice sheet grew, Pico said, comes from data about sea level during the period, and suggests that the ice sheet over Canada, particularly in the eastern part of the country, remained relatively small for a long period, and then suddenly began to grow quickly.


“In a way, this study is motivated by that, because it’s asking: Can we use evidence for a change in river direction … to test whether the ice sheet grew quickly or slowly?” she said. “We can only ask that question because these areas were never covered by ice, so this record is preserved. We can use evidence in the landscape and the rivers to say something about the ice sheet, even though this area was never covered by ice.”


While the study offers strong suggestive evidence that the technique works, Pico said there is still a great deal of work to be done to confirm that the findings are solid.


“This is the first time this has been done, so we need to do more work to explore how the river responds to this type of uplift and understand what we should be looking for in the landscape,” she said. “But I think it’s extremely exciting because we are so limited in what we know about ice sheets before the last glacial maximum. We don’t know how fast they grew. If we don’t know that, we don’t know how stable they are.”


Going forward, Pico said she is working to apply the technique to several other rivers along the Eastern Seaboard, including the Delaware, Potomac, and Susquehanna, all of which show signs of rapid change during the same period.


“There is some evidence that rivers experienced very unusual changes that are no doubt related to this process,” she said. “The Delaware may have actually reversed slope, and the Potomac and Susquehanna both show a large increase in erosion in some areas, suggesting the water was moving much faster.”


In the long run, Pico said, the study may help researchers rewrite their understanding of how quickly the landscape can change and how rivers and other natural features respond.


“For me, this work is about trying to connect the evidence on land to the history of glaciation to show the community that this process—what we call glacial isostatic adjustment—can really impact rivers,” Pico said. “People most often think of rivers as stable features of the landscape that remain fixed over very long, million-year time scales, but we can show that these Ice Age effects can alter the landscape on millennial time scales. The ice sheet grows, the Earth deforms, and rivers respond.”


Author: Peter Reuell | Source: Harvard University August 14, 2018]



TANN



Archive


More on Research identifies barley beer in Bronze Age Mesopotamian drinking vessels

Archaeologists have long known beer was important in the ancient world, but mainly from writings and drawings—finding actual archaeological evidence of the fermented beverage has been a major challenge.











More on Research identifies barley beer in Bronze Age Mesopotamian drinking vessels
Beer-drinking cups being excavated at Khani Masi held some of the earliest chemical evidence of beer.
Researchers had to take extra precautions to avoid contaminating the cups with modern compounds
[Credit: Sirwan Regional Project]

But archaeologists have now employed a new technique to detect beer residues in nearly 2,500-year-old clay cups dug up in a site in northern Iraq.


“What Elsa [Perruchini] has demonstrated is the chemical signature of fermentation in the vessels that also contains the chemical signatures consistent with barley,” says Claudia Glatz, a senior lecturer in archaeology at the University of Glasgow and a coauthor of a study published recently in the Journal of Archaeological Science. “Putting those together is the interpretation that this is barley beer.”


The use of the technique will likely prove groundbreaking, giving archaeologists a chance to find beer at other excavations. But it is also helping Glatz and Perruchini, a PhD archaeology student at the university and the lead author of the study, understand more about the Babylonian Empire’s outer reaches during a period of cultural upheaval.


Archaeologists have long known beer has been around in Mesopotamia from iconography which showed beer drinking and references to the beverage in old accounting texts describing beer given as rations. Among the best known examples are those found in the Sumerian Hymn to Ninkasi dating to roughly 1800 BC. A beer recipe in the form of a poem, the text praises the beer goddess Ninkasi for soaking malt in a jar and spreading mash on reed mats, among other things.


Further references to beer can be found in the Epic of Gilgamesh – a Mesopotamian poem considered the oldest surviving work of literature—in which Enkidu, a “wild man” who grew up in the forest, drinks seven jugs of beer and decides he likes civilization enough to become Gilgamesh’s sidekick.


“[Beer] is a quintessential Mesopotamian food stuff,” says Glatz. “Everyone drank it but it also has a social significance in ritual practices. It really defines Mesopotamian identities in many ways.”


The earliest physical trace of beer dates back to the late fourth millennium BC in present day Iran at a site called Godin Tepe, where archaeologists found what is known as beerstone, a chemical byproduct related to the brewing process and visible to the eye, on ancient ceramic material.


But Perruchini got downright microscopic, examining the chemicals present in the residues clinging to the clay of old cups and jars. She and Glatz are involved with a larger archaeological project at the site, called Khani Masi, exploring the evidence of imperial expansion of the Babylonians into the Diyala River valley. The area, in present day Kurdistan in northern Iraq, is key because it formed a travel hub, connecting the lowlands where some of the world’s first cities and imperial powers were formed with the resource-rich Zagros Mountains.


“Those are very important long distance exchange routes that are leading through this area,” Glatz says.











More on Research identifies barley beer in Bronze Age Mesopotamian drinking vessels
This drinking cup dates to 1415 to 1290 BC and shows how beer drinking shifted from a communal activity
to one where people drank from individual vessels [Credit: Sirwan Regional Project]

The excavated section of Khani Masi Perruchini and Glatz are working on dates from 1415 BC to 1290 BC, the late Bronze Age, according to the material evidence such as pottery and the evidence of burial practices excavated. Perruchini was interested in seeing how the people who lived in the area identified culturally, and what better way to get to the bottom of this than examining the food and drink they consumed?


Perruchini says that she first tried to use more traditional chemistry techniques to test the residues, but found the results had been contaminated.


“During an excavation, usually people are touching everything, so it’s going to leave residuals on it,” she says.


One particularly troublesome contaminant comes from the sunscreen often used in sun-drenched digs. As Perruchini notes, some chemical compounds in sunscreen are similar to wine, which could be confusing archaeologists in some cases.


Perruchini decided to take the lab directly to the field, handling freshly excavated bowls or cups with gloves to get more reliable results before anyone else got their hands on them.


“This isn’t something that is discussed a whole lot in the organic residue work in archaeology,” Glatz says. “So Elsa’s method is actually very important in gaining reliable archaeological results – that is not something that has happened so much in the past.”


Perruchini then analyzed the distinct compounds of the residues using gas chromatography, a technique that separates the various compounds present in a mixture. Gas chromatography had not been used in archaeology to examine a collection of compounds to identify something like beer, and the method allowed her to get very specific in her analysis. The team could ignore any contemporary chemicals, while an analysis of soil samples taken from outside the clay vessels allowed them to rule out any soil contamination which could have affected the residues over the past two millennia and “only focus on archaeologically significant compounds.” They then compared the remaining compounds with residues left from modern-day beer samples and found they matched.


“It’s actually very affordable,” Perruchini says about the process, adding that other archaeologists should be able to repeat her technique to identity beer or other residues in ancient remains.


“They were really able to get a gold mine of information out of these pots,” says Mara Horowitz, an archaeology lecturer at Purchase College at the State University of New York who was not involved in the recent work. “It looks like they have done what we’ve all been dreaming about doing.”


She adds that it’s a pity that so many cups already excavated can no longer be examined in this way, since they have likely already been contaminated by modern chemicals.











More on Research identifies barley beer in Bronze Age Mesopotamian drinking vessels
Aerial view of the Khani Masi site [Credit: Sirwan Regional Project]

Augusta McMahon, a reader in Mesopotamian archaeology at the University of Cambridge, agrees that many archaeologists – herself included – haven’t been careful enough when handling old pots and other material evidence, other than keeping certain objects within the protocols required for radiocarbon dating. She added the study was “very exciting” and “good science.”


But both McMahon and Horowitz are also interested in the social aspect of the study and what it means.


According to iconography and excavations from sites older than Khani Masi, Mesopotamians usually drank beer from straws in a larger communal jar around the third millennium BC. But in the subsequent millennium, these larger beer jugs start to give way to individual vessels.


“We have this explosion of a very diverse range of drinking cups,” Glatz says, adding that archaeologists in the past assumed the “daintier vessels” were used for wine. But their chemical analysis shows they held beer.


Horowitz says that the shift to these cups gives archaeologists a sense of social processes, as well as marks of status and power depending on the degree of work that went into their design.


“Interactions at a site like Khani Masi can really give us a sense of what’s going on in a local scale,” she says.


Khani Masi was contemporary with the Kassite rule of the Babylonian empire in Mesopotamia and likely under Kassite control. The Kassites, who likely originated from the Zagros Mountains, assimilated many of the previous Mesopotamian cultural traditions and had diplomatic relations with other empires such as the Assyrians and the Egyptians.


“Khani Masi very much looks like another outpost if you like, or a settlement of Kassite origin in some ways,” Glatz says. But their analysis of the cups shows that while it may have sat near the edges of the empire, the locals drank beer similar to other Mesopotamians, indicating that cultural practices from the center of the empire had spread to the fringes.


Beer was important to the Mesopotamians because the malting process helps to preserve the grains for longer, while fermentation increased the grains’ nutritional value.


Or, in the words of McMahon, “It’s what most people drink because the water is not so good.”


Of course, the mild buzz was a draw, too – even the Hymn to Ninkasi notes the wonderful feeling and blissful mood of drinking beer.


Without a fridge handy, the stuff wouldn’t have lasted very long. “Mesopotamians would have been brewing beer constantly,” Glatz says.


The question on everyone’s minds, of course, is how the beer tasted. Perruchini and more of Glatz’s students are attempting to find out by brewing beer using techniques described in the Hymn to Ninkasi and ingredients which they think would lead to residues similar to those they’ve found at Khani Masi.


The trouble is, there were a number of types of beer described in old Mesopotamian texts, whether golden, red or dark ales, and Perruchini and her colleagues are uncertain of all the ingredients. Unlike other researchers who recently tried to reproduce 4,000-year old Hittite beer with tasty results, Perruchini says that they have not even tasted the stuff they brewed in their class yet.


“It smells so terrible,” she says.


Author: Joshua Rapp Learn | Source: Smithsonian [August 14, 2018]



TANN



Archive


Bronze Age treasure hoard discovered in England

A local detectorist has discovered a Bronze Age hoard in a field near Amble. The collection of 56 individual pieces including spearheads and axeheads has been verified by the British Museum and will now be returned to the region.











Bronze Age treasure hoard discovered in England
The Bronze Age hoard of axeheads and sword fragments found near Amble
[Credit: The Ambler]

The detectorist, who didn’t wish to be named, told The Ambler he discovered the haul while using his metal detector in February 2016. “It was very cold that day. I dug out two axeheads and then I realised how much more there was. I contacted the county archaeologist, and they removed the rest. It took a while to get it all out.”


Sadly a bowl was damaged as it was removed, but the items were carefully taken away to be assessed by experts at the British Museum. It has taken two years, but now the hoard has been designated officially as treasure, and The Ambler understands will likely be acquired by the Hancock Museum in Newcastle.


When artefacts like these are discovered by metal detectorists, any reward must be shared with the landowner. And even though they were valuable to the Bronze Age person who buried them, their monetary value today is considerably less. “What would probably have been worth a BMW in today’s value, is now likely to be the equivalent of a second hand Robin Reliant,” said the detectorist.


Although our coastline has a history of Bronze Age burial cysts and finds, there has been no other similar discovery of that age in the area. There are many hypotheses as to why, nearly three thousand years ago, a trove of weapons was buried by someone who, for whatever reason, never dug them back up. Were they buried complete with handles or fixings? Or was it just the metalwork which was important to the Bronze Age hoarder.











Bronze Age treasure hoard discovered in England
The detectorist holding the sword in the field where it was found
[Credit: The Ambler]

Archaeologist Clive Waddington who led the recent excavations at Low Hauxley told The Ambler: “It is very doubtful that the axes and spears would have been intact. Usually they are tightly bagged together. They could as likely be the hoard of a metalsmith, keeping metal for melting down into new tools/weapons, as a hoard of ‘treasure’/valuables.”


The objects date from 950-750BC and consist of fragments of copper alloy swords, spearheads, and a bowl/cup or ladle. The items have endured millennia of hunting, farming, mining and general life going on all around, surviving ever deeper ploughing techniques, especially in recent times.


The detectorist was amazed and delighted at his discovery. “This hoard was found between eight and 17 inches from the surface, so the plough has just missed it every year. It’s quite remarkable.”


You can see the full list of items in the hoard here


Author: Anna Williams | Source: The Ambler [August 14, 2018]



TANN



Archive


Climate change multiplies harmful marine heatwaves

The number of days marked by potentially destructive ocean heatwaves has doubled in 35 years, and will multiply another five-fold at current rates of climate change, scientists warned Wednesday.











Climate change multiplies harmful marine heatwaves
Sustained spikes in sea-surface temperature – typically to a depth of several metres – can have devastating
consequences, just as hot spells over land [Credit: Tarik Tinazay/AFP]

Even if humanity does manage to cap global warming “well below” two degrees Celsius (3.6 degrees Fahrenheit), as called for in the Paris climate treaty, marine heatwaves will sharply increase in frequency, intensity and duration, they reported in the journal Nature.


Compared to hot spells over land, which have claimed tens of thousands of lives since the start of the century, ocean heatwaves have received scant scientific attention.


But sustained spikes in sea-surface temperature—typically to a depth of several metres—can also have devastating consequences.


A 10-week marine heatwave near western Australia in 2011, for example, shattered an entire ecosystem and permanently pushed commercial fish species into colder waters.


Another ocean hot spell off the coast of California warmed waters 6 C (10.8 F) and lasted for more than a year. Known at “The Blob”, it generated toxic algae blooms, caused the closure of crab fisheries, and led to the death of sea lions, whales and sea birds.


“Marine heatwaves have already become longer-lasting and more frequent, extensive and intense in the past few decades,” lead author Thomas Frolicher, an environmental physicist at the University of Bern, Switzerland, told AFP.


“This trend will accelerate in the future under further global warming.”


Coral reefs—which cover less than one percent of the ocean’s surface but support a quarter of marine species—are especially vulnerable to warming waters.


Recent spikes in tropical and sub-tropical sea surface temperatures, magnified by an especially potent El Nino, have triggered an unprecedented mass bleaching of corals, affecting 75 percent of global reefs.


“Until now, the corals were often able to recover from such bleaching events,” said Frolicher.


“However, if the intervals between these events becomes shorter, the corals will no longer be able to regenerate and irreversible damage can be expected.”


“This can lead to a complete change in the ecosystems,” he added.


Frolicher and colleague Erich Fischer, along with Nicholas Gruber from ETH Zurich, used satellite data and climate models to calculate recent and projected changes in marine heatwaves.


The projections looked at two possible futures.


The so-called “business-as-usual” scenario—the track we are on now—sees average global air temperature heat up 3.5 C by 2100.


Under the Paris Agreement scenario, global warming is capped at 2 C above the pre-industrial revolution benchmark.


So far, the world has warmed by 1 C.


The number of days with marine heat waves jumps from about 33 today, to 84 in a 2 C world, and 150 in a 3.5 C world, the researchers found.


The area covered by marine hotspots has already increased three-fold, and will rise nine- and 21-fold in a 2 C and 3.5 C scenario, respectively.


Marine heatwaves will also last longer on average, from 25 days today, to 55 days in a 2 C world, and 112 days on a planet that has warmed by 3.5 C.


Marine heatwave may also affect the ocean’s ability to soak up greenhouse gases.


To date, oceans have absorbed more than 90 percent of the extra heat generated by manmade climate change. Without that sea-water sponge, air temperatures would be tens of degrees Celsius higher.


It is already known that global warming slows the transport of the carbon absorbed by microorganisms at the ocean surface to the ocean floor, where it can safely remain for millennia.


Marine heatwaves do not affect that “carbon cycle” process, but could make things worse by damaging shallow-water ecosystems that also store CO2.


“That damage can lead to the release of the carbon,” said Frolicher.


Author: Marlowe Hood | Source: AFP [August 15, 2018]



TANN



Archive


In Conversation with the Sun: Parker Solar Probe Communications

Our Sun powers life on Earth. It defines our days, nourishes our

crops and even fuels our electrical grids. In our pursuit of knowledge

about the universe, we’ve learned so much about the Sun, but in many ways we’re

still in conversation with it, curious about its mysteries.


image

Parker Solar

Probe
will advance this conversation, flying

through the Sun’s atmosphere as close as 3.8 million miles from our star’s

surface, more than seven times closer to it than any previous spacecraft. If

space were a football field, with Earth at one end and the Sun at the other,

Parker would be at the four-yard line, just steps away from the Sun! This

journey will revolutionize our understanding of the Sun, its surface and solar

winds.


image

Supporting Parker on its journey to the

Sun are our communications networks. Three networks, the Near Earth Network,

the Space

Network
and the Deep Space Network, provide our

spacecraft with their communications, delivering their data to mission

operations centers. Their services ensure that missions like Parker have

communications support from launch through the mission.


image

For Parker’s launch

on Aug. 12, the Delta IV Heavy rocket that sent Parker skyward relied on the Space

Network. A team at Goddard Space Flight Center’s Networks Integration Center

monitored the launch, ensuring that we maintained tracking and communications

data between the rocket and the ground. This data is vital, allowing engineers

to make certain that Parker stays on the right path towards its orbit around

the Sun.


image

The Space Network’s constellation of Tracking and Data

Relay Satellites
(TDRS) enabled constant communications coverage for

the rocket as Parker made its way out of Earth’s atmosphere. These satellites

fly in geosynchronous orbit, circling Earth in step with its rotation, relaying

data from spacecraft at lower altitudes to the ground. The network’s three collections

of TDRS over the Atlantic, Pacific and Indian oceans provide enough coverage

for continuous communications for satellites in low-Earth orbit.


image

The Near Earth Network’s Launch

Communications Segment tracked early stages of Parker’s launch, testing our brand

new ground stations’ ability to provide crucial information about the rocket’s

initial velocity (speed) and trajectory (path). When fully operational, it will

support launches from the Kennedy spaceport, including upcoming Orion

missions. The Launch Communications Segment’s three ground stations are located

at Kennedy Space Center; Ponce De Leon, Florida; and Bermuda. 


image

When Parker separated from the Delta IV

Heavy, the Deep Space Network took over. Antennas up to 230 feet in diameter at

ground stations in California, Australia and Spain are supporting Parker for

its 24 orbits around the Sun and the seven Venus flybys that gradually shrink

its orbit, bringing it closer and closer to the Sun. The Deep Space Network is

delivering data to mission operations centers and will continue to do so as

long as Parker is operational.



Near the

Sun, radio interference and the heat load on the spacecraft’s antenna makes

communicating with Parker a challenge that we must plan for. Parker has three

distinct communications phases, each corresponding to a different part of its

orbit.


When Parker comes closest to the Sun, the

spacecraft will emit a beacon tone that tells engineers on the ground about its

health and status, but there will be very little opportunity to command the

spacecraft and downlink data. High data rate transmission will only occur

during a portion of Parker’s orbit, far from the Sun. The rest of the time,

Parker will be in cruise mode, taking measurements and being commanded through

a low data rate connection with Earth.


image

Communications infrastructure is vital to

any mission. As Parker journeys ever closer to the center of our solar system,

each byte of downlinked data will provide new insight into our Sun. It’s a

mission that continues a conversation between us and our star that has lasted many

millions of years and will continue for many millions more.


For more information about NASA’s mission

to touch the Sun: https://www.nasa.gov/content/goddard/parker-solar-probe


For more information about our satellite

communications check out: http://nasa.gov/SCaN




Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Featured

UFO sighting in Odessa UA НЛО шар плазмы UFO sighting in Odessa UA, white orb An unusual-looking object appeared suddenly in the sky at...

Popular